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Abstract—In this paper, we apply an evolutionary
optimization classifier, referred to as genetic algorithm-based
multiple classifier (GaMC), to the long-range contacts
prediction. As a result, about 44.1% contacts between
long-range residues (with a sequence separation of at least 24
amino acids) are founded around the sequence profile (SP)
centre when evaluating the top L/5 (L is the sequence length
of protein) classified contacts if the SP centers are known.
Meanwhile, with the knowledge of sequence profile center and
the GaMC method, about 20.42% long-range contacts are
correctly predicted. Results showed that SP center may be a
sound pathway to predict contact map in protein structures.

Availability- http://mail.ustc.edu.cn/∼bigeagle/gamc.htm
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I. INTRODUCTION

During the last several decades more and more protein

sequences are sequenced at an incredible high speed. At

the same time, experimental determination of protein struc-

tures using x-ray crystallography and NMR techniques is a

complicated and time-consuming problem and not efficient

enough to allow for rapid structural determination of newly

high-speed discovered sequences. However, protein struc-

tures are deemed as a key step toward understanding protein

functions and taking rational molecule design. Therefore,

discovering the relations between protein sequence and its

corresponding three-dimensional (3D) structure using com-

putational techniques is becoming more and more urgent.

It is well known that non-local interactions of residue pairs

are crucial for proteins to attain their native state [1, 2].

Fariselli1 and Casadio reported that if residue contacts for

a protein are known, the major features of its 3D protein

structure could be achieved by combination of this knowl-

edge with correctly predicted motifs of secondary structure

[3]. More importantly, even corrupted map with nonphysical

contacts of a protein could lead to recover its 3D structure

by projecting the contact map onto its closest physically

allowed structural counterpart [4]. Finally, previous results

may indicate that 50% corrected contact prediction, at least

for proteins with less than 150 amino acids, with 8Å distance

cutoff ought to suffice that reconstruction [5].

A lot of previous works focused on residue contacts

prediction using various methods, such as method with the

use of evolutionary information [6], Self-Organizing Map

(SOM) integrated by genetic programming (GP) [7], neural

networks (NN) [8, 9], general input-output hidden Markov

models (GIOHMMs) [5], support vector machine (SVM)

[10, 11] and so on. Punta and Rost reported that about 30%

of the predicted contacts were correct (in accuracy) with the

residue separation at least six residues, where about 10%

of the observed contacts are predicted (in coverage) [12].

Vullo’s two-stage predictor achieved 19.8% prediction accu-

racy for minimum contact separation of 24 residues, when

choosing the top L/5 contacts for evaluating prediction

performance [13]. Wu and Zhang proposed a comprehensive

assessment of sequence-based and template-based methods

for contact map prediction and achieved accuracy around

20% for long-range contacts [14]. Currently, the most accu-

rate contact predictor, NNcon, achieved 18% accuracy based

on an evaluation of CASP8 dataset [15]. These methods

solved the problem of residue contacts prediction from

different angles, however, the development of computational

approaches to predict inter-residues contacts is still at its

embryonic stage. Therefore, fully exploring inter-residues

contacts through proteins and designing novel approaches to

predict residue contacts of proteins is extremely necessary.

In this paper, we propose a novel way to solve the residue

contact problem with the analysis of sequence profile centers

(SPC) [16]. The start point is based on the SPCs that

represent average sequence profiles. One sequence profile is

an encoding vector for a residue pair whose spatial distance

between the members falls into one distance interval such as

less than 8Å or from 8 to 10Å. Afterwards, we address the

question of whether or not a multiple classifier being capable

of learning the correlation between sequence information

and the corresponding residue contacts of protein. To do that,

we propose a genetic algorithm-based multiple classifier

(GaMC), apply to calculate the distance between sequence
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profile of residue pair and each sequence profile center, and

finally to make a conclusion of whether one residue pair

being in contact or not. Our previous experimental results

show that about 44.1% long-range contacts are around at

their SPC, when selecting the top L/5 classified contacts

and the residue pair more than 24 apart if the SPCs are

known. As a result, about 20.42% long-range contacts are

correctly identified using GaMC method.

II. METHODS

A. Datasets and cross-validation

We obtained the protein chain set from PDB-REPRDB

[17], which selects protein chains from PDB based on

PDB Rel. 2007 11 14, and updated on 15 April 2009.

We selected proteins chains that are resolved by X-ray

crystallography with resolution ≤2.0Å, and R-factor ≤19%.

The sequence identity between each two chains is less than

25%. As a result, we achieved 193 proteins with single chain

that have Consurf-Hssp files [18].

To validate our approach, a two-fold cross-validation

strategy was employed to conduct the related subsequent

experiments. In this case, predictor was trained on one subset

and tested on another one and vice versa.

B. Feature spaces

We firstly encoded input vectors for each pair of residues,

i and j, then respectively stretch the two residues from N- to

C-termini. Meanwhile, two corresponding sliding windows

with an odd size of window length, referred to as win,

are used to encoding input vectors. They are respectively

centered at residue i and j, where win is set to 9 in our

work. Due to the improvement of contacts prediction by the

application of segment connecting the residues of i and j
[11, 12, 19, 20], we took a third central window with five

consecutive residues centered at the residue site int ((i+j)/2).
To begin with, we used the property of residue se-

quence profile (SP) obtained from HSSP database [21],

where each residue was represented by 20 elements whose

values were evaluated from multiple sequence alignment

and their potential structural homologs. As discussed above,

the three windows contain (9+5+9)=23 residues, each of

which corresponds to a sequence profile vector with 20

elements. Totally, the input vector for one residue pair

contains 20×23=460 elements, that is, one input vector

includes 460 features or variables.

C. Definition of multi-class contacts

Usually, contact map of a polypeptide chain with sequence

length N is represented by an N×N matrix, CM. It is

defined in terms of spatial distances between C-alpha atoms

of residues and a predefined cutoff distance d. Usually, d
is set as 8Å. So contact map for two-class contact can be

defined as:

CMij =

{
1
0

if d(i, j) ≤ d
Otherwise,

, |i− j| ≥ 24 (1)

where d(i, j) denotes the distance between residues i and j.

In this paper, we took another contact expression, called

as multi-class contact, as follows:

CMi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
1
2
...

m
...

n

if d(i, j) ≤ d
d < d(i, j) ≤ d1
d1 < d(i, j) ≤ d2
...

dm−1 < d(i, j) ≤ dm
...

dn−1 < d(i, j)

, |i− j| ≥ 24

(2)

In this novel expression two residues, separated more

than 24 residues in sequence and therefore named as long-

range residue pair, are in long-range contact if their spatial

distance is less than or equal to 8Å. The residue pair is

assigned as contact distance-class 0. To continuously assign

contact distance-class 1, 2, . . . , or n to other residue pairs,

similar representations can be done. For a protein chain, for

instance, there are M long-range residue pairs whose spatial

distances are more than 8Å. By ranking the M residue pairs

in order of spatial distance, n distance intervals are achieved

whose numbers are roughly the same, about int(M/n). For

example, residue pairs in the m-th interval are to belong to

contact distance-class m. In this case, their distances are

more than dm−1 and less than or equal to dm. Therefore,

distance between one pair of residues belonging to contact

distance-class m is farther than that between pair of residues

belonging to contact distance-class l, if m > l and m, l ≤ n.

Finally, multi-class contact map can be constructed and then

be applied to a multiple classifier system which performed

better than a single classifier system.

D. Description of sequence profile centre

Provided that a sequence profile S be the encoding vector

for representing one residue pair. So, as discussed above,

one sequence profile vector includes 460 elements. Another

definition is sequence profile center (SPC), which simply

is an average calculation of all the sequence profile vectors

belonging to one contact distance-class for one protein chain.

The definition of sequence profile center Ci in one protein

chain j for contact distance-class i is given as follows:

Cj
i =

1

mi

mi∑
l=1

Si(l) (3)

where Si(l) denotes the l − th sequence profile whose

corresponding residue pair is to belong to contact distance-

class i; mi is the number of residue pairs belonging to
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contact distance-class i; and i≤n, where n is the number

of the contact distance-classes.

Then, we can calculate the distance between one SP and

each SPC. Generally, the label i of SPC Ci is assigned to

a SP if the SPC is the nearest than other SPCs to the SP.

Some other representations for profile center or centroid can

be found in literature [22].

For testing our method, the SP centers for test protein

chain, due to unknown 3D structure, need to be extracted

from the training protein chains. All test chain use the same

SP centers. So, the definition of SP center Ci of contact

distance-class i for test chains is given as follows:

Ci =
1

m

m∑
j=1

Cj
i (4)

where m denotes the number of training protein chains.

E. GaMC predictor architecture

In this paper, we analyze the long-range contacts using

our proposed GaMC predictor, and its original input vectors

are transformed in such a way that the classification rate

is significantly enhanced while retaining the efficiency and

simplicity of the original vectors. For particular problem in

the prediction of the long-range contacts, the normalized SP

vectors are regarded as input data into the GaMC predictor.

Then we consider one sample vector as a variable set, and

proceed to search for an optimal transformation for these

variables based on genetic optimization. After obtaining

the optimal transformation, multiple sub-classifiers based on

distance dissimilarity is used to classify test samples. Finally,

this method derives a modified multiple classifier system by

fusing the outputs of a number of independent classifiers.

1) Chromosome encoding: Genetic algorithm [23] is an

adaptive heuristic search algorithm, which has been com-

monly applied in optimization problems for searching op-

timal solutions within a solution population. The technique

behaves in an analogous manner to Darwinian evolution by

maintaining a population of solutions based on a fitness

function, and strives to obtain the individuals with the

maximum or minimum fitness value within the population.

A string represents each candidate in the population, which

is associated with a fitness value that reflects its capability to

survive into the next generation during the evolution process.

To study the long-range contacts, we let V be a feature

space set V = (v1, v2,. . . ,vm), where vi is a feature variable

and m is the dimension of feature vectors. Each residue pair

within a protein is represented as a feature vector of V . We

want to train a GA-based classifier that can correctly classify

the feature vectors into K classes C1, C2, . . . , CK . In this

work, we focus on the problem of five contact distance-

classes; one class for long-range residue pairs in contacts

and the other four classes for long-range residues pairs not

in contacts. Our goal is to search for an optimal feature

selector T that maximizes the classification rate based on

the corresponding selected features. To obtain the optimal

feature selector T , GAs are applied to search through the

space of feature transformers with a fitness function. To do

that, firstly, a vector vi of the feature space V is represented

as a chromosome string Si. A chromosome is composed of

three kinds of transformers represented by characters a, b,
and c, and the size of a chromosome is the same as a feature

vector.

a        Variable to be removed

b        Merge with next variable of same category

c        Same as b

c   b   b   a   b   c   c   a

One original normalized vector

Merged
Removed

c   b   b   a   b   c   c   a c   b   b   c

Reconstructured vectorTransformed normalized vector

Figure 1. Transformation for Input Vector. One histogram bin in each
original normalized vector denotes one feature or variable and the height
corresponds to the magnitude of the feature. The transformed vector should
be also normalized but not shown here for the clear comparison between
the original vector and the resulted vector.

The schema for chromosome encoding is as follows: (1)

Character a in a chromosome indicates that the value in the

corresponding position in all feature vectors in V will be

removed; (2) Two consecutive b’s or c’s indicate that the

values in the corresponding positions will merged together.

For instance, for a feature vector of 8 dimensions, its cor-

responding chromosome is a string of 8 characters from the

ternary alphabet (a, b, c). For instance, Figure 1 illustrates

the selection process for a feature vector (x1, x2, x3, x4,

x5, x6, x7, x8). In this case, the corresponding chromosome

is ‘cbbabcca’. After being applied the transformers, the

elements of the sample feature vector that remain or are

merged are concatenated and normalized to form a new

vector of four dimensions. The new normalized vector will

be used for long-range contacts classification.

2) Definition of fitness function: For each transformation

Tm associated with the string Sm, we can construct the

transformed input function fi(v
m
t |Tm) for input training

vector xi. For distance-class Ck, we can define the following

centroid function based on Tm as:

fk(vmt ) =
1

|Ck|
∑

xi∈Ck

fi(v
m
t |Tm) (5)

where |Ck| is the cardinality of distance-class Ck

Given these centroid functions, a new distance-class struc-

ture Cl(l = 1, 2, ...,K)can be imposed on the input vector

x as follows:
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x ∈ Cl if d(f, fk) ≤ d(f, f l), l = 1, 2, ...,K (6)

where f is the function of the unknown model x and d(··)
is a measure of dissimilarity between two functions.

Now, we can extend the above GA method by producing

a multiple classifier system and by training a specific sub-

classifier for each contact distance-class of the system, due to

the possible no-existence of a global optimal transformation

and interval subset for all contact distance-classes. The basic

idea is to develop K sub-classifiers for each individual

distance-class using a GA training process, and the aim is to

search for the optimal transformation and interval subset for

each sub-classifier. To achieve the purpose, the normalized

conditional function fi(v
m,k
t |Tm,k) is used as input for the

k-th classifier, where Tm,k are the optimal transformation

for this sub-classifier, respectively. Moreover, fusing the

outputs of a number of independent classifiers can improve

classification rate since the errors made by a classifier may

be corrected by the others [24-26].
Recall that the k-th classifier is trained to identify whether

or not an unknown model comes from distance-class k.

The output of the k-th classifier is denoted as Ok and

makes a final decision about whether the Ok is 1, which

means that the input data comes from distance-class k, or

0, which indicates that the input data does not come from

contact distance-class k. To perform the task, one fitness

function for each k-th classifier is used to measure the

discrepancies between the original distance-class structures,

C1, C2, . . . , Ck and the imposed distance-class structure,

Cm
1 , Cm

2 , ..., Cm
K , based on the string Sm. So the fitness

function is defined as:

ℵm
k =

K∑
k=1

∣∣∣Ck

⋂
Cm

k

∣∣∣+
K∑

k=1

∣∣∣Ck

⋂
Cm

k

∣∣∣ (7)

where Ck and Cm
k denote the complements of Ck and

Cm
k , respectively. The first term counts the number of

correct positive classifications, i.e., the number of patterns

in distance-class k actually classified as belonging to the

distance-class. On the other hand, the second term counts the

number of correct negative classifications, i.e., the number of

patterns not belonging to distance-class k that are correctly

classified as not belonging to distance-class k.
Particularly, the maximal value of ℵm

k will be obtained

when the two distance-class structures exactly coincide, and

its value will decrease as their discrepancy increases.

F. GA parameters
Table 1 summarizes the parameters for GA used to train

our GaMC predictor.

G. Performance indexes
In fact, to evaluate the performance of our classifiers,

some measurements about performance index have to be

Table I
THE PARAMETERS LIST USED IN GA

Parameter Value
Population size 150
Crossover probability 0.95
Mutation probability 0.01
Crossover type Single point
Selector type Roulette Wheel
Scaling scheme Linear
Termination Best score not changed over 120 gen-

erations

introduced. Here, we applied the criteria of accuracy (Acc)

and coverage (Cov), which were adopted at CASP/CAFASP

[12, 27] and defined as follows:

Acc =
TP

TP + FP
Cov =

TP

Nact
(8)

where TP denotes the number of true positives, FP denotes

the number of false positives, and Nact is the number of

actual contacts.

III. RESULTS

A. Analyses on dataset
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Figure 2. Relationship of the number of long-range contacts versus the
corresponding protein sequence length.

For our dataset, there are 193 protein chains with 34549

residues and 42089 long-range contacts. Some proteins have

more residue pairs in long-range contact and some proteins

contain fewer contacts with respect to protein sequence

length. But approximately protein sequence length has a

linear relationship with the corresponding number of long-

range contacts through a thorough statistics for the whole

dataset [20]. The distribution of sequence length versus the

number of long-range contacts is shown in Figure 2.

B. Transformation of sample vectors

After GA was applied to reduce the dimensionality of

input vector, the transformed input vector can be used as

input vector into classifier. Meanwhile, some input variables
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0 46 92 138 184 230 276 322 368 414 460
0

0.01

0.02

(a)

0 46 92 138 184 230 276 322 368 414 460
0

0.01
0.02
0.03

(b)

Figure 3. (a) One original input vector with 460 dimensions, (b) Transformed input vector by the transformation for contact distance-class 0 classifier.
All the two vectors are equalized by normalized themselves.

were removed or merged, but it was done without decreasing

the information of input. Moreover, in doing so the com-

putational complexity was dropped dramatically. For five-

distance-class problem in our experiments, five optimal non-

linear transformations for each sub-classifier were achieved.

Therefore, there are five-discard for representing the ratio

of the number of removed to that of total variables. For

instance, one discard ratio 34.348% for distance-class one

classifier is illustrated in Figure 3. As a result, there are

143 original variables removed; and 65 variables merged

together into 40 variables. The transformed vector can be

obtained by normalizing itself after removing or merging

original variables. Other transformed vectors, similar to

the illustration in Figure 3, can be got for the remainder

classifiers, such as for distance-classes 2, 3, 4, or 5, with

respect to their corresponding transformations.

C. Analyses for proteins with respect to their numbers of
long-range contacts

In our dataset, due to containing unknown or non-standard

amino acid residues or chain breaks in some protein chains,

and even including zero or little long-range contacts in

some protein chains (seeing in Figure 2), the classification

performance for these protein chains may decrease to some

extent. If those protein chains are excluded, then higher

classification performance may be obtained through our

dataset.

D. Performance of GaMC predictor

Running the GaMC predictor can lead to predict whether

or not one sample vector is belonging to long-range contact

distance-class. Since the contact prediction accuracy varies

significantly with individual proteins and their structure

classes [7], we calculate accuracy and coverage for each

test protein. For each protein chain, we select four levels

of predicted contacts ranked by predicted distance between

SP vector and SP center for long-range contact. The reason

in doing so is that the total number of true contacts has

approximately a linear relationship with the protein length

[20]. And the relationship was also shown in Figure 2 for

our dataset. In detail, the four levels are ‘All’, ‘L’, ‘L/2’,

and ‘L/5’, respectively, where L denotes protein length.

Results show that in many cases (e.g. 1hh7A, 1bxaA, 1gpr ,

1cewI, 1cznA, 1gn0A, 1igd , 1tif , 1s8nA) the prediction

accuracies are larger than 30%.

However, the prediction accuracies for some protein

chains such as 1cv8 and 1c7kA are pretty low. Investigating

through the dataset, we observe that the contact prediction

accuracy is related to the prediction of SP centers, the

number of long-range contacts and the quality of multiple

sequence alignment as well as the proportion of beta-sheets.

Furthermore, in order to investigate the distribution of our

GaMC long-range contact prediction with respect to CATH

[28] domain classes, we compute the average accuracy

on the five CATH structure classes (Table II). According

to Table II , the contact prediction accuracy of proteins

belonging to β-sheets (α−β, all β) is higher than that of all

α-helical proteins, which is consistent with other previous

observations [7, 11]. In Table II , the average accuracy is

about 20.42% when selecting the top L/5 classified contacts

and the residue pair with 24 apart. Taking into account

the inherent physical restraints of protein structures, this

prediction performance may be helpful for reconstructing an

ab initio low-resolution structure since previous experiments

show that only L/5 or even less residues contacts are

required to reconstruct a low resolution structure for a

small protein [29-33]. However, the hard challenge is how

to reconstruct a protein structure from even a corrupted

predicted contact map [4], where contact restraints are much

less reliable than the experimental contacts determined by

NMR techniques.

E. Performance Comparison based on CASP7 evaluation

The CASP7 evaluation procedure is focused on inter-

residue contact predictions with linear sequence separation

≥ 12 and ≥ 24, respectively [34, 35], while in this work
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Table II
PREDICTION ACCURACY OF GAMC PREDICTOR

CATH class
Classification Accuracy (Unit: %)

Protein Number
ALL+ L L/2 L/5

Alpha 1.71 6.25 7.73 10.96 24(29)
Beta 4.56 11.07 14.53 20.11 32(37)
Alpha Beta 4.84 14.5 18.3 23.93 89(97)

Few SS† 10.37 11.35 15.6 24.5 1(1)∗

Multi-domain chains 2.64 8.35 11.87 16.71 21(29)

Average 4.09 11.86 15.23 20.42 167(193)#

†‘Few SS’ means there are few secondary structures in this CATH domain class.
+‘ALL’ denotes the number level of original length that is used to measure the classification performance.
∗The bracket denotes the number of protein chains except the Few SS chain, and we also calculate the average performance excluding
the chain due to no statistical meaning for only one protein chain.
#The bracket denotes the original protein number before excluding the proteins with unknown or non-standard amino acid residues
or chain breaks.

we only focus on long-range contact prediction with linear

sequence separation ≥ 24 and with assessing the top L/5
predicted contacts, where L is the sequence length of the

protein. These evaluation metrics are also similar to those

used in the previous Critical Assessment of Fully Automated

Structure Prediction Methods (CAFASP) [36, 37] and in

the EVA contact evaluation server [38]. We use the similar

procedure and the same test proteins to evaluate the accuracy

and coverage for our GaMC predictor.

Table III
PERFORMANCE COMPARISON BASED ON CASP7 EVALUATION*

Methods
Separation ≥ 24

Accuracy Coverage
BETApro [39] 19.7 3.2
Distill [13, 40] 13.7 1.4
GPCPRED [7] 10.5 2.0
Possum [41] 21.4 2.6
PROFcon [12] 8.1 1.6
SAM T06 server [42] 18.5 3.9
SVMcon [11] 13.1 2.8
GaMC 18.8 3.0

*Noted that some data are extracted from Table III in literature
[11]. The nine predictors are evaluated on the 13 de novo
domains of CASP7. The experimental structures of the targets
and the domain classification can be downloaded at the CASP7
web site (http://predictioncenter.org/casp7). The accuracy and
coverage of contact predictions are evaluated at sequence
separation ≥ 24 and with assessing the top L/5 predicted
contacts.

Contact map predictors participating in CASP7 include

BETApro, Distill, GPCPRED, PROFcon-Rost, Possum,

SAM T06 server, SVMcon and so on. Table III reports the

performance of the seven automated contact map predictors

in the CASP7 experiment. The performance of GaMC pre-

dictor is also appended under the bottom of Table III . It can

be seen that its accuracy is 18.8%, overall slightly behind

Possum and BETApro. Its coverage at a sequence separation

threshold of 24 is 3.0%, which is less than SAM-T06 and

BETApro.
As previous discussed [11], something should be paid

attention to understanding the meanings of the comparison

among these methods. One thing should be noted that in

the CASP7 experiment, methods being made predictions

for part of domains, such as PROFcon, can not be directly

compared with other methods. Here we include its results for

completeness in Table III. Additionally, since the evaluation

dataset and scheme we used may be slightly different from

the official CASP7 evaluation, we only try to evaluate the

current state of the art of contact predictors instead of

ranking them.

Previous works may indicate that prediction accuracy of

50% for distant contacts with 8Å distance cutoff ought

to suffice to reconstruct 3D protein structure, at least for

proteins with less than 150 amino acids [5, 34]. Other results

showed that the accuracy level of about 30% is required

for deriving moderately accurate (low resolution) 3D protein

structures from scratch [29-33]. Despite the lower accuracy

and coverage made by protein contact predictor, it is an

important step towards reaching the accurate level [5, 12,

34]. From previous CASP prediction results, it can found

that in a word, these predictors tend to perform more and

more better [11].

Actually, in this work, the contact prediction accuracy is

related to the SP centers, the number of long-range contacts

and the quality of multiple sequence alignment as well

as the proportion of beta-sheets. However, it is extremely

difficult to build a specific non-linear expression based on

the relationship.
To clearly illustrate the prediction results of GaMC pre-

dictor, we figure the native 3D structure and the predicted

contact map of protein 1kao A (see Figure 4). Protein

1kao A contains one protein chain with 167 residues. It

consists of six α helixes and five β-sheets. In this case,

L/5 (34) predicted contacts with sequence separation ≥ 24

are selected, and the corresponding prediction accuracy is

35.29%. It is shown that the predicted contacts are clustered
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(a) 3D structure of protein chain 1kao A
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(b) Predicted (red rectangle) versus natural (blue grid) long-
range contacts

(c) True predictions of long-range con-
tacts in its 3D structure (in brown)

Figure 4. Comparison of predicted versus natural long-range contacts for protein chain 1kao A. The two slope black lines in 4(b) denote the separation
line where two members of residue pair separate 24 residues in sequence.

around the true contacts (see Figure 4(b)). It is of interest that

many false positive contacts are also clustered around the

true contacts. Therefore, even these contacts may be helpful

to reconstructing protein structure.

IV. CONCLUSION

As pointed out by Baldi [43], a machine learning al-

gorithm adopting a simple representation of a sequence

space can be much more powerful and useful than using

the original data containing all details. We found that most

long-range contacts or non-long-range contacts are near to

their SP centers[16]. Therefore, we developed the GaMC

predictor to reduce the dimensionality of the input features.

The purpose of the GaMC method is to transform input

vectors to obtain higher classification rate. As a result, our

method could be more useful for the problem of long-range

contacts prediction.

Summarizing this work, we can conclude as follows:

(1) Most long-range contacts or non-long-range contacts

are clustered around their SP centers by using our GaMC

predictor when selecting the top L/5 classified contacts. And

it was found that about 44.1% long-range contacts are near

to their SP centers and about 20.42% long-range contacts

can be correctly predicted under the same condition; (2) In

this work, an interesting phenomenon may give us some

clues that proteins with long-range contacts to be clustered

together into few clusters might make higher classification

performance. Likewise, non-long-range contacts also behave

the similar manner. Therefore, for contact distance-class or

one non-contact distance-class, using a set of SP centers

with the information of predicted secondary structures and

hydrophobicity might obviously improve classification pre-

diction; (3) A novel classifier or convincing method might be

proposed to predict long-range contacts Based on our previ-

ous analysis on SP centers [16]. First, we may use techniques

such as radial basis function neural network or support

vector regression to predict each SP centers. Second, GaMC

can be applied to transform the input feature space based

on the optimization rule that the highest classification rate

is obtained. Finally, fusing the outputs from multi-subclass

classifiers might achieve relatively higher performance.

In conclusion, this paper proposes a promising way to

predict long-range contacts based on SP centers. It can be

expected that the predictor based on SP centers can make

a great improvement on the prediction of contact map and

even protein structures in the future research works.
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