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Abstract: Prediction of protein-protein interaction sites can guide the structural elucidation of protein complexes. We 

propose a novel method using a radial basis function neural network (RBFNN) ensemble model for the prediction of pro-

tein interaction sites in heterocomplexes. We classified protein surface residues into interaction sites or non-interaction 

sites based on the RBFNNs trained on different datasets, then judged a prediction to be the final output. Only information 

of evolutionary conservation and spatial sequence profile are used in this ensemble predictor to describe the protein sites. 

A non-redundant data set of heterodimers used is consisted of 69 protein chains, in which 10329 surface residues can be 

found. The efficiency and the effectiveness of our proposed approach can be validated by a better performance such as the 

accuracy of 0.689, the sensitivity of 66.6% and the specificity of 67.6%. 

Keywords: Protein interaction sites, heterocomplex, radial basis function neural networks, ensemble, spatial neighboring resi-
due, surface residue. 

1. INTRODUCTION 

 Protein-protein interaction has become one of the most 
important research fields in the current molecular biology. 
Understanding the characteristics of interfacial sites between 
two interacting proteins is a necessary step to decipher the 
molecular recognition process and to elucidate protein func-
tion and the structure of protein complexes. The ability to 
predict interfacial sites and interacting protein pairs is also 
important in mutant design and drug design [1]. Experimen-
tal techniques, such as X-ray and NMR, detect residues in 
protein-protein interaction surface by determination of the 
structure of a protein complex. However, the number of re-
solved protein complexes is currently far less than the num-
ber of known protein sequences. It is necessary to develop 
computational approaches to identify the roles of function 
residues for the analyses of protein-protein interaction sites. 

 Some computational methods have been proposed for 
studying protein interaction sites by analyzing the different 
characteristics of amino acids present in the interfaces of two 
or more proteins in a protein complex [2-6]. Based on the 
observation that proline is the most common residue found in 
the flanking segments of interaction sites, Kini & Evans pro-
posed a method to predict protein interaction sites by detect-
ing the presence of "proline brackets" [7]. By defining and 
analyzing a series of residue patches on the surface of pro-
tein structures, Jones & Thornton successfully predicted the 
interfaces in a set of 59 structures using six parameters (sol-
vation potential, residue interface propensity, hydropho bic-
ity, planarity, protrusion and accessible surface area) 
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[8, 9]. In 2004, Yan et al. proposed a two-stage method con-
sisting of a support vector machine (SVM) and a Bayesian 
classifier to predict protein interaction sites and concluded 
that interface residues tend to form clusters in the primary 
amino acid sequence [10]. Wang et al. also employed ma-
chine learning methods for the prediction of protein interac-
tion sites using features extracted from spatial sequence and 
evolutionary conservation scores based on a phylogenetic 
tree [3, 5]. Chen & Jeong proposed a random forest-based 
integrative model based on physicochemical properties and 
evolutionary conservation score, residue-based distance ma-
trix and sequence profile [11]. Jones & Thornton found that 
hydrophobicity is a common characteristic of interfacial sur-
faces in homodimers, most of which exist in an oligomeric 
state [8]. Although Glaser reported that hydrophobic residues 
are abundant in large interfaces while polar residues are 
more abundant in small interacting patches [12], it still re-
mains unknown about the residue preference for the inter-
faces in heterocomplexes. Therefore, how to capture the in-
herent properties which can differentiate interface residues 
and non-interface residues is the most important issue in 
predicting interaction sites in heterocomplexes.  

 In this work, a radial basis function neural network 
(RBFNN) ensemble-based model is proposed and realized in 
prediction of the protein interfacial sites. The ensemble 
model was built on the profiles of spatially neighboring se-
quences and information of evolutionary conservation. By 
analyzing 69 protein heterodimers, we achieved 0.689 of 
prediction accuracy, 66.6% of sensitivity and 67.65 of speci-
ficity. These results are in agreement with the previous find-
ings that conserved residues in protein are most likely to be 
found at important functional sites on a protein [13].  
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2. MATERIALS AND METHODS 

2.1. Data Preparation 

 A dataset containing 69 protein chains was obtained from 
our previous work [3]. As a non-redundant dataset, there is 
no protein chain whose sequence identity is larger than 30% 
existing in the dataset. The dataset has also removed homo-
complexes whose interacting surfaces are characterized by 
hydrophobicity, and protease-inhibitor complexes whose 
interfaces can be distinguished by serine and histidine active 
site signatures. The dataset also excludes the chains labeled 
as ‘membrane peptides’, ‘small proteins’ or ‘coiled coils’ in 
the SCOP classification [14].  

2.2. Surface Residue and Interface Residue Definition 

 There are no consentaneous definitions of surface resi-
dues and interface residues in current researches [3, 10, 11, 
15]. Generally, those definitions are dependent on the reduc-
tion of accessible surface area (ASA) or the distance between 
the target residue and the atoms in the other molecule of 
complex. In this paper, a residue is defined to be a surface 
residue if its relative ASA is at least 16% of its nominal 
maximum area defined by Rost and Sander [16]. ASA was 
computed for each residue in each protein chain using the 
DSSP program [17]. The coordinates of the particular chain 
are the only parameters used in calculation. Otherwise, ASA 
will be incorrect due to the other chains existing in the com-
plex. A residue is classified to be an interface residue if the 
spatial distance between its alpha-carbon (CA) atom and one 
of CA atoms in the other chains in the complex is less than 
1.2 nm. Each protein in this paper is represented by its CA 
trace and the other atoms are not considered. According to 
the above definitions, we obtained 10329 surface residues, 
34.8% of which are interface residues.  

2.3. Predictor Design 

 To build the predictors that can distinguish interaction 
sites from non-interaction sites in protein sequence, we ex-
tracted features based on residue spatial sequence profile and 
evolutionary conservation score. Sequence profile for each 
sequence site was obtained from the homology-derived 
structures of proteins (HSSP) database [18], in which each 
site in protein sequence was represented by a 20-dimensional 
vector indicating the occurrence of 20 amino acid. Evolu-
tionary conservation score, a measurement of evolutionary 
rate for a given site in the sequence, was calculated using 
ConSurf software [12]. 

 In our experiment, the prediction of protein-protein inter-

action sites was treated as a two-category classification prob-

lem. The predictor assigns each sequence site in protein 

chain as a target value. The target value is +1 if the target 

residue is classified into interface residue set, and -1 other-

wise. The predictor is generated by using the RBFNN to 

judge whether a residue in protein sequence is located in an 

interface. The input vector of the network is the conservation 

information of a surface residue, i.e., the predictor is fed with 

a window of 11 residues centered by the target residue and 5 

spatially neighboring residues on each side. The use of these 

windows means that the predictor is trained by patches that 

consist of 11 spatially continuous residues although the tar-

get values determined by the target residues. Therefore, the 

final input vector for each residue in RBFNN is a 

 
(20 + 1) 11=231 -dimensional vector. 

2.4. Constructing the RBFNN Ensemble Predictor 

 Radial basis function neural network (RBFNN) is an ef-

ficient approach to solve non-linear problems by using a 

special class of functions, named radial basis function [19-

22]. Given a sufficient number of hidden units, a RBFNN is 

also considered as a universal approximator for any continu-

ous functions. A standard RBFNN consists of three layers of 

neurons, i.e., input, hidden and output layers. The nodes 

within each layer are fully connected to the previous layer. 

The input variables are each assigned to a node in the input 

layer and passed directly to the hidden layer without weights. 

The hidden nodes contain the radial basis function, also 

called transfer function. Given an input pattern 

1 2( , , , )T

dx x x=x , the output of RBFNN, ( )y x , can be ob-

tained as follows: 
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where c is the number of hidden layer’s neurons, w denotes 
the corresponding weights and  is radial basis function. 
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2.5. RBFNN Ensemble 

 In the beginning of 1990s, Hansen and Salamon im-
proved the generalization ability of an artificial neural net-
work (ANN) system through ensembling artificial neural 
networks [23]. Later, Hansen et al. applied ANN ensemble 
for handwritten digit recognition and achieved a good results 
in which the accuracy is 20-25% better than that of individ-
ual ANN [24]. Other works had shown that RBFNN ensem-
ble also improve the pattern classification performance [25, 
26]. In this work, we split the original dataset randomly into 
6 subsets in almost equal size due to the large dataset that 
consists of 10329 surface residues. We selected one of the 
six subsets as test dataset, and the remaining five subsets 
were used as training datasets. In each training dataset, we 
trained a RBFNN classifier, and tested the RBFNN model in 
the test dataset. For all protein residues, we therefore ob-
tained five predicted results. A majority voting method was 
adopted to decide a prediction to be the final output, if more 
than half of the individual RBFNN vote the prediction. This 
process was repeated six times, where different data part was 
selected as test dataset each time. This analysis architecture 
is displayed in Fig. (1). 

3. RESULTS AND DISCUSSION 

3.1. Evaluation for Predictor Performance 

 Prediction accuracy, the ratio of the number of correctly 
predicted protein interaction sites to the total number of pre-
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dicted interaction sites in experiment, is considered the best 
index for evaluating the performance of our predictors. 
However, only 34.8% of the surface residues are interaction 
sites according to their definitions in this work, which lead to 
a rather unbalanced distribution of positive (interaction sites) 
and negative (non-interaction sites) samples. Therefore, the 
performance of predictor is evaluated by three parameters, 
i.e., specificity (SP), sensitivity (SN) and correlation coeffi-
cient (CC) [27]. The specificity is defined as the ratio of the 
number of matched residues between the predicted set and 
the actual set over the total number of predicted residues. 
The sensitivity is defined as the ratio of the number of 
matched interaction sites over the total number of the inter-
action sites of the observed set.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Workflow of RBFNN ensemble. The whole dataset D is 

split into six parts 1 2 6{ , , , }D D D ; the ensemble strategy will take 

one of them, i.e., iD  as test dataset, and each remaining part can be 

seen as a training dataset on which a RBFNN classifier is trained. 

Each RBFNN classifier will give one prediction result for iD , and 

the final prediction is combined by each prediction of the RBFNN 

classifier using majority voting method.  

 

 Let TP (true positives) be the number of true positives, 
where residues are predicted to be interface residues that 
actually are interface residues, and FP (false positives) be the 
number of false positives, where residues are predicted to be 
interface residues that are in fact not interface residues. In 
addition, assume TN (true negative) to be the number of true 
negatives, and FN (false negative) to be the number of false 
negatives. Thus, the total number of examples N = TP + TN 
+ FP + FN. 

 Then the evaluation measures can be computed as fol-
lows: 
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 Correlation coefficient is a measure of how well the pre-
dicted class labels correlate with the actual class labels. Its 
range is from 1 to 1, where a correlation coefficient of 1 
corresponds to perfect predictions, while a correlation coef-
ficient of 0 corresponds to random guessing.  

3.2. Classification Results of Surface Residues 

 For the whole dataset in this work, our predictor classi-
fied 2166 surface residues into interaction sites, of which 
1486 are true positives. Therefore, the prediction accuracy is 
68.6%. Based on the definitions of the evaluation measures, 
we achieved SP = 66.6%, SN = 67.6% and CC = 0.2458, as 
showed in Table 1. The specificity for a class is the probabil-
ity that a positive prediction for the class is correct, where 
SP

+ 
corresponds to the interface residues and SP

- 
to the non-

interface residues. The sensitivity for a class is the probabil-
ity of correctly predicting an example of the class. The com-
paratively high and balanced values of SP and SN indicate 
that the average ability of the predictor is independent of the 
class type (interface or non-interface). The values of SP and 
SN listed in Table 1 demonstrate that our proposed approach 
has a good performance of predicting interaction sites in 
heterocomplexes. Taking the actual class label into account, 
the values of SP and SN on the negative subset are higher 
than the ones on the positive subset. This result is related to 
the unequal numbers of interface residues and non-interface 
residues in our dataset (only 34.8% surface residues are de-
fined as the interface residues). The correlation coefficient of 
0.25 indicates that the predictor is better than a random pre-
dictor (whose correlation coefficient is 0). These results 
achieved here suggest that our computational methods are 
efficiently capable of predicting the interaction sites in pro-
tein chains. 

 The distribution of the number of proteins against differ-
ent performance measures of RBFNN_ensemble for 69 
polypeptide chains is shown in Fig. (2). This experiment is 
based on the complete dataset and majority voting. In Fig. 
(2), the horizontal axis stands for thresholds of different per-
formance measures, including accuracy, specificity, sensitiv-
ity and correlation coefficient; the vertical axis means the 
number of proteins in the prediction results which satisfy 
different performance thresholds. Specificity indicates the 
probability that an actual residue is classified by a predictor 
into a class. All proteins have the SP value of over 20%. This 
means that there are at least 20% residues in each protein 
that can be identified correctly. For 94.2% (65 of the total 
69) of the proteins, our predictor can predict at least 50% of 
residues into the right class. In addition, the SN values are 
greater than 20% for all proteins in our dataset. However, at 
least 50% residues were correctly classified for over 85.5% 
(59 of 75) of the proteins. The correlation coefficient values 
listed in Table 1 show how well our predictor worked. It can 
be seen in Fig.(2) that among 78.3% of the proteins the cor-
relation coefficient values are greater than 0, which suggests
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Table 1. The Comparison of the Performance Obtained by RBFNN Trained by the EM Algorithm as well as the BP Algorithm on 

our Dataset 

 CC SP SN SP
+
 SP

-
 SN

+
 SN

-
 

RBFNN_EM 0.18 59.9% 58.3% 57.5% 61.8% 42.5% 74.8% 

BP_ANN 0.12 54.5% 55.2% 49.2% 58.8% 44.9% 62.9% 

RBFNN_ensemble 0.2458 66.6% 67.6% 57.0% 71.7% 34.8% 86.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The statistical results of accuracy and three performance parameters. 

 

that our predictor is indeed better than the random predictor 
[27]. For 95.7% of the proteins, the predicted interface resi-
dues are indeed located in the interface almost exclusively 
because the accuracy is above 50% [15]. 

3.3. Comparison to Other Methods 

 In previous studies, many neural networks based ap-
proaches have been adopted to infer protein interaction sites 
for protein sequence, such as BP_ANN, a artificial neural 
network model based back-propagation algorithm proposed 
by Farisell et al. [15] and RBFNN_EM, a radial basis func-
tion neural networks optimized by expectation maximization 
algorithm introduced by Wang et al. [4]. Zhou and Shan 
identified whether a residue is interacting residue or not us-
ing neural networks based on their structural neighbors [28]. 
The accuracies of these approaches are around 70% for the 
prediction of interactions at the residue level. The compari-
son of the performance between our methods and the 
BP_ANN approach used by Fariselli et al. and RBFNN_EM 
by Wang et al. is shown in Table 1. As a result, it was found 
that our method exhibited a more confident effectiveness 
with respect to the BP_ANN and RBFNN_EM algorithm. A 
direct comparison of results with the experiments of Zhou is 
impossible due to differences in the choice of source data, 
and the definitions of surface residue as well as interface 
residue, but we note that there are two consecutive neural 

networks were used in the training process of Zhou’s ex-
periments, which is more complex than the networks adopted 
here. 

 Yan et al. trained a support vector machine to investigate 
this problem and achieved relatively high specificity (71%) 
and sensitivity (67%) [10]. In addition, Ofran and Rost at-
tempted to identify interaction sites using neural networks 
based on the sequence clustering interface residues, and they 
reported an accuracy of 70% and 20% sensitivity [29]. These 
works all tackled the problem of predicting protein interac-
tion sites based on primary sequence, and it is an important 
attempt in prediction of protein interface without structural 
information. The HSSP database was also adopted in these 
studies. The HSSP sequence profile is constructed by multi-
ple sequence alignments of homologous proteins for each 
protein of known three-dimensional structure in the protein 
data bank (PDB) [30]. The information contained in the se-
quence profile indicated evolution conservation of the resi-
dues, which include structural conservation and functional 
conservation. For the study of interaction sites between the 
protein chains in complex, the spatial neighbor residues in 
surface we adopted here are more effective than the consecu-
tive residues in primary since these residues provide with 
more information of functional conservation which is more 
responsible for forming interactions between protein part-
ners. The similar conclusion between our method and those 
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similar approaches is that no information about geometric 
and electrostatic complementarity within interfaces is re-
quired. 

3.4. Recognition of Interaction Sites 

 The effectiveness of our proposed method is further 
demonstrated by a test on a protein complex 1gla_F (PDB 
ID). This protein is a phosphocarrier protein, IIIGlc, which is 
an integral component of the bacterial phosphotransferase 
(PTS) system [31]. As shown in Fig. (3) the structure dia-
gram was generated using RasTop (http://www.geneinfinity. 
org/rastop) tool. The prediction results are illustrated by 
sphere residues, where the green sphere denotes true posi-
tives (true interaction residues that are predicted correctly), 
the yellow sphere indicates the missing interface residues 
(true interaction residues that did not detect) and the red 
sphere denotes false positives. It can be found that there is 
only 1 observed non-interface residue that cannot be cor-
rectly predicted by our method. Ten residues that actually are 
interface residues had been predicted as non-interface resi-
dues; it may be related to the original dataset in which only 
34.8% surface residues had been defined as interface resi-
dues. But from Fig. (3), it can also be found that the incor-
rectly predicted residues are much closed to the observed 
interface residues. If we magnify the threshold a little, by 
which we can distinguish interface from non-interface resi-
dues, the predicted incorrect residues will be taken as inter-
face residues and thus can be predicted exactly. Among the 
factors that affect the experiment results, the task of how to 
classify a residue as a surface residue or an interface residue 
becomes most important. For the reliability index, we prefer 
to a stricter criterion in our experiment even at the cost of 
descent of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The visualization of prediction results in protein chain 

1gla_F (PDB index). T he target protein is shown in gray wire-

frame, the residues related to prediction are displayed in sphere and 

the corresponding colors are coded as follows: white denotes inter-

face residues identified by the predictor; grey denotes the missing 

interface residues in the predictor; black denotes the residues pre-

dicted as interface residues but non-interface residues actually. 

 

CONCLUSION  

 In this paper, we described a novel ensemble approach of 
protein interaction sites predictor by using RBFNN, which 
uses spatial neighbor residues and their conservation HSSP 
profile. Generally, interfaces consist of interacting residues 
that belong to two different chains along with residues in 
their spatial vicinity. If the partner chain is removed, those 
interacting residues are exposed to the solvent. So we focus 
only on the surface residues in this study. As a database 
merging information from three-dimensional structures and 
one-dimensional sequences of proteins, HSSP database im-
plied the residue conservation in structural context. Many of 
the residues on interfaces that are critical for binding to-
gether are likely to be evolutionarily conserved. This is be-
cause the pace of evolution at interfaces is slower than the 
rest of the protein. This slower pace of evolution at interfaces 
can be explained by the phenomena of co-evolution, where 
substitutions in one protein will result in the selection pres-
sure for reciprocal changes in interacting partners [32]. The 
evolution conservation we employed in this paper provides 
the foundation for our designed predictor. The results ob-
tained in this paper showed that our proposed method is a 
promising approach for studying protein-protein interaction, 
and it can facilitate those experimental investigators to vali-
date the roles of specific residues in protein complexes. 
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